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we generalize this concept for noisy images? Further, higher order derivatives would result in peak pairs which 
would bear no physical meaning. It is difficult to get an ideal image in the real environments. A real image is 
flooded with lots of signals; objects, shadows, reflections, transmittance, Gaussian noise and others. Given the 
kind of complexity we are looking at, finding sharp peaks is not the kind of answers one should always seek; 
instead we should always let ourselves in finding out those subtle changes in the intensity that may be constitute 
an edge. Tracking out the intensity variations at regions of interest and correlating with the local pixel values 
would provide more meaningful insights in framing better edge detection techniques. 

There are many techniques available to resolve the edges e.g. Sobel, Prewitt, Laplacian, Laplacian of the 
Gaussian, Gaussian of the Laplacian, Canny, Susan etc [1-8]. A priori knowledge on the kind of images being 
dealt is utmost necessary in designing robust edge detection algorithms.  It is also important to understand that the 
edge detection techniques are highly sensitive to noise levels and therefore, as the images becomes more 
deteriorated by the various means it becomes more difficult to recognize the edges in the background of noise [9, 
10]. Sobel and Prewitt, which are highly popular methods, are good enough to resolve edges from clear images 
that contain low noise level. As the noise levels go higher in intensities in comparison to the desired signal then 
there is high probability that wrongs edges are detected. Authors generally use pre-filter e.g. Gaussian or 
Diffusion or some smoothening techniques to eliminate the noise level so that edge detection technique can 
provide clear details of the edges. Nonlinear filtering are also being explored [11]. The theory of noise reduction 
still remains a challenging one. Speckle noises that arise in Ultrasound imaging is one of the highly studied 
subject. Authors say that they arise out of echoes arising due to the heterogeneous medium [12]. Highly 
computational methods that involve designing of complex pre-filters or noise elimination and others are also on 
pursuit, e.g. wavelet [13, 14], statistical [15], neural network [16], support vector machines [17] etc. 

Noise modeling is an entire research area by itself, but before we can go on modeling noise it is important to 
understand more about the currently available edge detection methods and understand their potentials so that they 
can be tuned accordingly and made immune to noisy images. By saying that a methods is immune I mean that 
methodology is independent of the noise signals and whatever be the noise they are not going to alter the edge 
qualities. Of course it is very challenging to learn how and what the noise signals are and how can the the 
methods be made immune to it, but nevertheless when dealing with method we need to be aware of the noisy 
pixels in the images. Shadows are not noisy, reflection and speckles at times can be considered as undesirable but 
still they cannot be treated as the noisy signals. When we say, Sobel kernel is not the methods to be used for noisy 
images, then, what are we missing? Though, I haven’t carried out noise analysis in the current context, it is 
important note that performance of edge detection techniques need to be correlated with the noise levels at the 
end.  

In course of my research on the image processing I came across a novel technique (abs-Laplacian), to perform 
edge detection faster than Sobel and Prewitt. Being the first of its kinds I did a short analysis to figure out if the 
technique is good enough to predict the edges as close as more popular ones. 

II. THEORY 

A. Image convolution with kernel 

Convolution is a mathematical operator that convolves two functions to give rise to another function. 
Convolution of an image is carried out on a pixel by pixel basis by multiplying the sub-image (I) with a kernel 
(K) and summing up the matrix elements (eq1.1 and eq1.2). Due to their filtering properties, they are used to 
smoothen, sharpen, intensity or enhance the image quality.  

cI I K           (1.1) 

1 1

( , ) ( 1, 1) ( , )
m n

c
k l

I i j I i k l K k l
 

           (1.2) 

Some technique use 2 kernels for computing the convolution, one along the x-axis (Gx) and other along y-
axis (Gy). In such cases where more than one kernel is employed, the final convoluted image is computed as the 
root of the sum of the squares of the convolution results of all axes. Some authors approximate the final 
convolution as a mere addition of the absolute of the convolution of along each direction rather than spending 
extra computation in finding the roots and squares [9, 18, 19]. 

B. Commonly used edge detection kernels (Sobel and Prewitt: 1st derivative operators) 

Sobel and Prewitt are the one among the most popular edge detection techniques. They involve two kernels 
one that performs convolution along x and the other along y direction. The final gradients are computed as the 
magnitude of the two components and at times they are approximated as a mere sum as discussed earlier. The 
direction of the normal to the edges or the orientation of the edge is given by inverse tangent of the ‘x’ 
component of the convolution upon the ‘y’ component.  
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Table1. Kernals for Laplacian 3x3 , Sobel and Prewitt 

Kernel Laplacian  Sobel  Prewitt 

 0 1 0  -1 0 1  -1 0 1 

Gx 1 -4 1  -2 0 2  -1 0 1 

 0 1 0  -1 0 1  -1 0 1 

     -1 -2 -1  1 1 1 

Gy     0 0 0  0 0 0 

     1 2 1  -1 -1 -1 

C. Absolute of the Laplacian (2nd derivative operator) 

Absolute of the Laplacian is a modified version of the way Laplacian operators are used for edge detection. 
With the kernel containing 1’s in the four orthogonal directions and a 4 at its base or centre point, the 
convolution is carried out with the input image to obtain a value at the corresponding (i, j)th location. Laplacian 
operators are highly sensitive to noise; moreover the edge quality appears blurred in comparison to the sobel and 
prewitt techniques. May be, one of the reasons could be that the Laplacian mask introduces negative values, 
which, rather than depicting the edges they are faded.  

2 2

2 2
( , )

L

I I
I x y

x x

 
 
 

        (1.3) 

The novel technique takes advantage of the absolute operation to eliminate the fading away of the edges. 
Unlike the usual procedure of multiplying the local 3x3 sub matrix of the image with the Laplacian operator, we 
would compute the Abs-Laplacian in a bit different manner.  Consider, an input image ‘p1’ of size (nx, ny). 
There are four basic operations to be performed which involves, taking the intensity differences of reference or 
the base pixel with its four neighbour pixels. It can be probably thought as taking a copy of the input image and 
shifting it in all the four directions by a small distance ‘ns’ in units of pixels. Then, we later perform a 
subtraction with the input image and take an absolute and take their sum to obtain output image ‘p2’. Matlab 
routine for carrying out abs-laplacian of an image is shown below, 

function [p2] = abs_laplacian_3 (p1, nx, ny, ns) 

    q0 = p1 (ns:nx-1, ns:ny-1); 

    q1 = p1 (1:nx-ns, 1:ny-ns); 

    q2 = p1 (ns+1:nx, 1:ny-ns); 

    q3 = p1 (1:nx-ns, ns+1:ny); 

    q4 = p1 (ns+1:nx, ns+1:ny); 

    p2 = abs (q1-q0) + abs (q2-q0) + abs (q3-q0) + abs (q4-q0); 

end 

III. RESULTS AND DISCUSSIONS 

A. Edge profiles of abs-Laplacian, Sobel and Prewitt  

Finding out differences among these methods has been in interesting topic to study. We do understand that 
there are many techniques available for edge detection but when it comes to the applications where real time edge 
detection is utmost necessary as in the case of robotic vision systems, choice of methods becomes very important. 
Good quality of the edges obtained also implies better detection of objects and good sensitivity. Kernels that are 
more than 3x3 in dimension, presuming that all are non-zero would involve matrix multiplications of more than 9 
that would need more computational power. The question I am trying to understand is; whether is it possible to 
develop a newer method that can enable edge detection to acceptable limits and also take time lesser time than the 
currently available ones? Well, Sobel and Prewitt are the commonly used techniques to start my analysis. In these 
methods, we compute 1st derivatives of the intensity along the Cartesian coordinates that involves 3 pairs of 
adjacent neighbors for each kernel. While computing the spatial derivatives, I thought if we were to compute the 
derivates using the neighbor pixels then we should consider only sufficient number of neighbors that can 
delineate the edges to certain extent. In the mean time, I came across the idea of taking sum of the absolute 
differences of the base pixel from its neighbors. Of course to make the edges as clear as possible I resorted 
towards the concept of Laplacian. Laplacian kernel are nothing but an approximation of the 2nd derivative that 
considers the base pixel and 2 adjacent neighbors along each coordinate. The convolution with new kernel (abs-
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detection methods without compromising edge qualities. It is difficult say anything about the noise immunity of 
the abs-Laplacian but further analysis needs to be carried out.  
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