
An Approach to Minimize Computational
and Communicational Overhead in Cloud

Computing
Kalpana Batra

Student M.Tech , Dept. of CSE,
SGT Institute of Engineering and Technology,

Gurgaon, India

Abstract- Cloud computing has been envisioned as the next generation information technology
architecture for enterprises. Cloud Computing moves the data on the cloud storage servers maintained
by service providers, which deprive the user of their control of the physical possession of data, even
though they are the owners of the data. This unique feature however has raised many new security
challenges which have not been well understood. Efficient verification techniques are of significant
importance for cloud customers to validate data integrity and availability are not applicable on the
outsourced data without having a local copy of the data. Downloading all outsourced data in order to
validate its integrity is impractical for the excessive I/O cost and the high communication overhead
across the network Therefore efficient techniques are needed for this. In this paper, we introduce a
framework and efficient constructions for dynamic provable data possession (DPDP), which extends
the PDP model to support provable updates on the stored data.

Keywords: Cloud Computing; Integrity, PDP, DPDP.

I. INTRODUCTION

Cloud computing is an internet based computing. It dynamically delivers everything as a service over the
Internet based on user demand, such as network, operating system, storage, hardware, software, and resources.
These services are classified into three types: Infrastructure as a Service (laaS), Platform as a Service (PaaS)
and Software as a Service (SaaS). Cloud computing is deployed as three models such as Public, Private, and
Hybrid clouds [1]. Moving data into the cloud offers great convenience to users since they don't have to care
about the complexities of direct hardware management. In this new model, the users put their data on the
cloud storage servers maintained by service providers, which deprives the users of their control of the
physical possession of data, even though they are the owners of the data. In this case, some new security
[10] needs and problems have arisen. At the same time, when one's data are outsourced, he wants to know
whether the data is truly stored at the correct servers and be intact as stated in the Service Level
Agreement (SIA). Efficient verification techniques are of significant importance for cloud customers to
validate data integrity and availability are not applicable on the outsourced data without having a local copy of
the data Downloading all outsourced data in order to validate its integrity is impractical for the excessive I/O
cost and the high communication overhead across the network Therefore efficient techniques are needed for
this.

The Provable Data Possession (PDP)[2] scheme is introduced to ensure the integrity of data in a typical PDP
model, the data owner generates some metadata/information for a data file to be used later for verification
purposes through a challenge response protocol with the remote/cloud server. The owner sends the file to
be stored on a remote server which may be untrusted, and deletes the local copy of the file.

In this paper, we introduce a framework and efficient constructions for dynamic provable data possession
(DPDP), which extends the PDP model to support provable updates on the stored data. Given a file F
consisting of n blocks, we define an update as either insertion of a new block (anywhere in the file, not
only append), or modification of an existing block, or deletion of any block Therefore our update
operation describes the most general form of modifications which a client may wish to perform on a file.

From literature survey, it has been observed that there is PDP schemes for multiple copies of a file, but it is
for static data. We propose dynamic multiple copy provable data possession scheme. Through this
scheme, it supports outsourcing of data with adequate guarantee. This scheme supports the dynamic
operations[9] like modification, insertion, deletion and append. The data owners & authorized users have
access to the files store on the cloud server. This scheme provides the security (correctness) against colluding
servers. Cloud servers can provide valid responses to verifier's challenges only if they actually have all data
copies in an uncorrupted and updated state. This helps to reduce the communication and computational
complexity.

Kalpana Batra / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 948

The rest of the paper is organized as follows. Section 2 describes the related work. In section 3 we have
proposed scheme. In Section 4 we have conclude our paper.

II RELATED WORK

Provable Data Possession (PDP) [2] is the scheme for validating integrity for the outsourcing data storage.
Definition of PDP model is first proposed by Ateniese et al. He also describes the related operations and
functions. So that owner can verify the data file at any time or periodically. A simple solution is to fragment
the file into data blocks and generate the Message authentication code for each block. Both the file and MAC
is sending to cloud server by deleting the original file. But keep the private key with them to verify the data
blocks. Along with MAC and private key, data blocks can be retrieved to verify the randomly selected data
blocks. But this suffers from various drawbacks, as communication latency is linear to the data size that is
queried [7]. Juels et al. [6] proposed a formal definition of POR and its security model. In their work, they
divide the file into small data blocks after encryption. This file is encoded by Reed-Soloman codes. The data
file is added into some "sentinels" to detect whether it was intact. But both schemes[2][6] do not support
dynamic data update and can only verify limited times because that the two schemes only have finite number
of the "sentinels" in a file. Number of PDP protocols [2][3][4][5] have been proposed but all these
protocols supports to static data. The application which requires frequent change in data or in file cannot
support by these protocols.

III DYNAMIC PDP SCHEME

A. Cloud Data Storage Model

We consider a cloud data storage service involving three different entities, as illustrated in Figure l: the
Data Owner, who has large amount of data files to be stored in the cloud. r; the cloud server (CS), which is
managed by cloud service provider (CSP) to provide data storage service and has significant storage space and
computation resources (we will not differentiate CS and CSP hereafter.); the authorized users, who are the
clients of data owners. Authorized users have access to use the data owner’s files. Authorized users make
the request to CS, CS returns data in the encrypted form. These encrypted files are decrypted by using the
private key of the authorized users. These private key is already shared between data owner and authorized user.

Figure1. Cloud Data Storage Architecture

Here we assume that the interaction between the owner and the authorized users to authenticate their
identities and share the secret key has already been completed, and it is not considered in this paper.

B. Notations

F - the data file[8] to be stored, we assume that F can be denoted as a matrix of m equal-sized data
vectors, each consisting of l blocks, these all data blocks belongs to Galois Field GF(2P) where p= 8 or 16
or 32. Let F = (F1, F2,F3,…..Fm) and Fl = (F1i , F2i ,F3i ,…..Fli)

T where (i ε s{1….m}), where i < = 2p-1. File
distribution is a symmetric layout with parity vectors are achieved with the data distributed matrix 'X' derived
from Vander monde Matrix.

Where bj (j ε (1…k)) are distinct elements randomly picked from GF (2P).

1. fkey(.) – Pseudorandom Function defined as F: ({0, 1} * x key – GF(2P)

2. Φkey(.) – Pseudorandom permutation which is defined as ∏: [0, 1] log2(l) x key-{0 , 1}log2(1)

3. #(.) cryptographic hash function

C. MAP TABLE DPDP (MT - DPDP)

Map table is stored on site of owner's or authorized users. It is a small data structure stored, which

Kalpana Batra / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 949

has 3 fields: Sequence Number (SN), Block Number (BN) and Version Number (VN). Map table is shown
in figure 2. File is divided into blocks. SN is an indexing on the file block. It indicates the physical
location of the file block. The BN is a counter used to make a logical numbering/indexing to the file blocks.
Thus, the relation between BN and SN can be viewed as a mapping between the logical number BN and the
physical position SN. The VN indicates the current version of file blocks. When a data file is initially
created the VN of all blocks is 1. If a specific block is being updated, its VN is incremented by 1. It is
of significant importance to note that the verifier keeps only one table for any arbitrary number of file
copies.

D. Procedural Steps

 Key Generation (keypub, keypriv,): This is the algorithm run by the authorized user. (keypub, keypriv,) is a
probabilistic algorithm run by the user. It takes as input a security parameter, and outputs a private key
key pri and a public key keypub. The client stores the private and public keys, and sends the public key
to the server.

 File Distribute (keypub, keypriv, , F): This is an algorithm run by the data owner to prepare (a part of) the file
for untrusted storage. It takes the input as private keypri and public keys keypub (a part of) the file F. It generates
number of copies Fi of a file F. A file copy Fi is an ordered collection of blocks {bij} 1 ≤ j ≤ m.

 Tag Gen generates the tag set Φ. The tags are generated for each block of file. The set Φ is an ordered
collection of tags for the data blocks σij is the tag generated for the block bij. σij is generated using the hash
function on BNi and VNj and the unique file identifier Fid which identifies the users file. This algorithm is
run by the data owner. It takes parameters as tag set Φ, file id Fid and the file F.

 Prepare _update is the algorithm which is run by data owner to do dynamic operation like delete, insert
the contents, or modify the block. Prepare_update generates the updated information.

 Modifications: Suppose the file F = {b1 ,b2, bn}. If the owner or authorized user wants to modify the
block bj with bj’ for all copies of F. This Prepare update algorithm has to do the following thing:

 1. VNj should be incremented by 1.

 2. Update the block bj with bj’. With this modification block size may increase or decrease. As per
the block size, adjust the block with creating a new or deleting the block.

 3. Generate new tag σ’ij for this block bij using hash function on BNj and VNj and the unique file identifier

 4. User send modify request to CSP with parameters Fid, bj’, σ’ij.

 Exec Update is the algorithm run by CSP. CSP takes the input as file copy Fi, σ’ij. After receiving this
request CSP does the following things:

 1. Update the block bj with bj’ along all copies Fi.

 2. Replace the tags σ’ij for σij in the set Φ.

 Insertion: Ins_Block is the algorithm run by the user to insert a new block b' after the position j in all
file copies.. Prepare_update algorithm has to do the following thing:

 1. Enter the new entry into Map table with fields SN, BN, and VN. If Map table has n number of SN values
then SNn+1 = n+1, VN has the initial value 1. BN has the value max(BNj) 1<j<m+1

 2. For block b', create new tag σ’i by applying the hash function on BNj and VNi and the unique file
identifier.

 3. Ins_Block sends the insert request to the CSP of insert block with the information of b', σ’j, Fid.

Upon receiving an insert request, CSP runs the ExecUpdate algorithm. CSP does the following things:

1. Inserts the new block b' in all file copies Fi for the unique Fid.

2. Inserts the tag σ’j at the jth position in the set Φ.

 Deletion : Del_Block algorithm is run at user site to delete the block at position j in the Map Table.
Del_Block sends the request to CSP with the information of bi , file id Fid. It deletes the block from all
file copies Fi. Upon receiving this request the CSP does the following things:

 1. It deletes the block at position j from all file copies Fi(1<i<n)

 2. Delete the tag σj from tag set Φ for the deleted block bj.

Kalpana Batra / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 950

The Figure 2 shows various changes due to dynamic operations. Figure 2.a shows initial Map Table consists of SN, BN, and VN. There are five blocks and

VN has initial value 1. Figure 2.b shows modifying the block at position 3. The value of VN has changed 2. Figure 2.c shows deleting block at position 2.
In these remaining subsequent blocks is shifts one position upwards. The SN has not changed during dynamic operations as it shows the physical

location of the block.

SN BN VN
1 1 1
2 2 1
3 6 1
4 3 2
5 4 1
6 5 1

 Fig 2.a Fig 2.b Fig 2.c Fig 2.d

Initial Map
table

Modifying Block at position 3 Deleting Block at position 2 Insert Block at Position 3

Figure2. Change in Map Table due to Dynamic Operation

Challenge Response Protocol: Challenge Response Protocol is used to verify the correctness and integrity of all
file copies of file.

Prove is the algorithm run by CSP and outputs proof P as a guarantee to actually storing of n number of file copies
which are updated and consistent. This algorithm takes input as file copy Fi and tag set Φ.

Verify is the algorithm run by the data owner to check the correctness of the file copies. It outputs 1 if all files are
verified correctly otherwise 0. It takes the input as proof P return by the CSP and public key keypub.

Challenge Response Protocol has the following steps:

1. Verifier sends c number of blocks to be challenged and two challenge keys pseudorandom function
and pseudorandom permutation, fkey(.) with k1 and Φkey (.) with k2 respectively. These two keys are
used to generate a set Q = [(j rj)] pair of random indices and random values.

2. CSP generates a set Q as the verifier did. It computes the σ. After generating the set Q = {(j,ri)) of
random indices and values, the CSP runs the Prove algorithm to generate evidence that it still correctly
possesses the n copies in an updated and consistent state. CSP responds with proof P having a set of
{σ , μ}.

3. Upon receiving the Proof, verifier runs the Verify algorithm to check the verification equation.

The verify algorithm returns 1 when data is not changed, otherwise 0.

IV ERROR LOCALIZATION

The verification equation will be true only if all the copies of files are correct and consistent if the proof
P = {σ, μ} generated by CSP will be valid. When one or more copies are corrupted then whole auditing procedure fails.
To respond this situation, data owner generates the tag σij for the block bij. But aggregations of tags are not done for the
blocks at the same indices in each copy. Therefore the tag set Φ becomes Φ = {σij}1≤j≤n, 1≤j≤m.

Upon receiving the proof P, the verifier equation validates this P. If the verification equation returns true means all
file copies are intact, correct and consistent. But if verification equation fails, the verifier ask CSP to send
σ = {σi}1≤i≤n

V PERFORMANCE ANALYSIS

In Map table, each entry requires 8 bytes of storage. Thus the total number of entries equals to the total number of file
blocks. During implementation, there is no need to store SN in Map table. However, there is only one table for all
file copies which increases the overhead for storage on verifier side. Therefore the storage complexity are O(m) and
O(mn) for Map table and the n copies. For example, if we are dealing with 64MB file with block size 4KB, the size of
the map table will be only 128KB for any arbitrary number of copies (table size = 2MB for 1GB file).

It reduces 83% of the computation time of cloud server provider. And Verification time can be reduced up to 95%. In
Map table, the storage overhead is independent of the number of copies.

SN BN VN

1 1 1

2 2 1

3 3 1

4 4 1

5 5 1

SN BN VN

1 1 1

2 3 1

3 4 2

4 5 1

SN BN VN

1 1 1

2 2 1

3 3 2

4 4 1

5 5 1

Kalpana Batra / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 951

VI CONCLUSION

As the development of cloud computing, security issue has become a top priority. This work represents a
new paradigm of security in cloud. Security is the responsibility of all parties involved in laaS cloud
computing. Vendors are responsible to provide a secure fabric. Information owners are responsible to
protect their data. This method achieves availability, reliability & integrity of data in cloud storage.
This scheme supports to the dynamic operations like insert, delete, append. This is better than the
single copy of DPDP. Through detailed performance analysis, this scheme provides more security to user's
data in cloud computing against Byzantine failure, unauthorized data modification attacks and even
server colluding attacks. We believe that data storage security in Cloud Computing, an area full of
challenges and of paramount importance, is still in its infancy now, and many research problems are yet to
be identified.

REFERENCES
[1] I-Hsun Chuang, Syuan-Hao Li, Kuan-Chieh Huang, Yau-Hwang Kuo "An Effective Privacy Protection Scheme for Cloud Computing",

ICACT-2011, pp. 260-265
[2] Ateniese, G., et al., "Provable data possession at untrusted stores", in Proceedings of the 14th ACM conference on Computer and

communications security. 2007, ACM: Alexandria, Virginia, USA. p. 598-609.
[3] Y. Deswarte, J.-J. Quisquater, and A. Sa"idane, "Remote integrity checking," in 6th Working Conference on Integrity and

Internal Control in Information Systems (IICIS), S. J. L Strous, Ed., 2003, pp. 1-11.
[4] D. L. G. Filho and P. S. L M. Barreto, "Demonstrating data possession and uncheatable data transfer," Cryptology ePrint

Archive, Report 2006/150, 2006.
[5] P. Golfe, S. Jarecki, and I. Mironov, "Cryptographic primitives enforcing communication and storage complexity," in FCO2:

Proceedings of the 6th International Conference on Financial Cryptography, Berlin, Heidelberg, 2003, pp. 120 —135.
[6] Juels, A. and J. Burton S. Kaliski, "Pors: proofs of retrievability for large files", in Proceedings of the 14th ACM. conference on

Computer and communications security. 2007, ACM: Alexandria, Virginia, USA. p. 584-597.
[7] K. Zeng, "Publicly verifiable remote data integrity," in Proceedings of the 10th International Conference on Information and

Communications Security, ser. ICICS '08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 419— 434.
[8] P. Syam Kumar, R. Subramanian and D. Thamizh Selvam, "Ensuring Data Storage Security in Cloud Computing using Sobol

Sequence", International Conference on Parallel, Distributed and Grid Computing (PDGC 2010),pp. 217-222.
[9] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, Jin Li, "Enabling Public Auditability and Data Dynamics for Storage Security in

Cloud Computing", IEEE transactions on parallel and distributed systems, vol. 22, no. 5, may 2011, pp. 847-860
[10] Minqi Zhou, Rong Zhang, Wei Xie, Weining Qian, Aoying Thou "Security and Privacy in Cloud Computing: A Survey",

IEEE 2010 Sixth International Conference on Semantics, Knowledge and Grids, pp. 105-112

Kalpana Batra / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013 952

	An Approach to Minimize Computationaland Communicational Overhead in CloudComputing
	Abstract
	Keywords
	I. INTRODUCTION
	II RELATED WORK
	III DYNAMIC PDP SCHEME
	IV ERROR LOCALIZATION
	V PERFORMANCE ANALYSIS
	VI CONCLUSION
	REFERENCES

