
Algorithms for Mining Association Rules:
An Overview

Sonam S. Chauhan

Department of Information Technology
Sipna College of Engineering and Technology

Amravati, India
Email: sonams.chauhan@yahoo.in

Dr. Prashant R. Deshmukh
Department of Computer Science and Engineering

Abstract— In this paper, we provide the basic concepts about association rule mining and compared
existing algorithms for association rule mining techniques. Of course, a single article cannot describe all
the algorithms in detailed, yet we tried to cover the major theoretical issues, which can help the
researcher in their researches.
Keywords- Association rules, algorithm, itemsets, database.

I. INTRODUCTION
 In [1] an researched techniques of data mining was presented called Association rule mining. It aims to
extract interesting frequent patterns, correlations, associations among sets of items in the transaction databases
or other data repositories. Various association mining algorithms will be briefly review and compared later.
 The problem of finding association rules falls within the purview of database mining [2, 3], also called
knowledge discovery in databases [4]. Related, but not directly applicable, work includes the induction of
classification rules [4, 5, 6], discovery of causal rules [7], learning of logical definitions [8], fitting of functions
to data [9], and clustering [10]. The closest work in the machine learning literature is the KID3 algorithm
presented in [11]. If used for finding all association rules, this algorithm will make as many passes over the data
as the number of combinations of items in the antecedent, which is exponentially large. Related work in the
database literature is the work on inferring functional dependencies from data [12]. Functional dependencies are
rules that require strict satisfaction.
 In this paper, we surveyed some of the existing association rule mining techniques. The rest of the paper is
organization as follows. Section 2 describes the problem of discovering association rules. Section 3 reviews
some well known algorithm. In section 4, comprehensive studies on various algorithms to determine large item
sets are presented. Finally, Section 4 concludes the paper.

II. PROBLEM DECOMPOSITION
The problem of finding all association rules can be divided into two sub problems [4]:
1. All sets of items (itemsets) that have transaction support more than minimum support is identified. The

support for an itemset means, the number of transactions that contain the itemset. Itemsets with minimum
support are referred as large itemsets, and all others items as small itemsets. In Section 3, we describe
some of the existing algorithms like Apriori and AprioriTid and DHP, for solving this problem.

2. Using the large itemsets to get the desired association rules.
III. ALGORITHMS FOR MINING ASSOCIATION RULES

A. Algorithm Apriori
 In Apriori algorithm the first pass simply counts the presence of item to get the large 1-itemsets. A
subsequent pass, say pass 2, consists of two phases. First, the large itemsets Lk-1 found in the (k-1) Th pass are
used to generate the candidate itemsets Ck. Next, the database is scanned and the support of candidates in Ck is
counted. For fast counting, it needs to efficiently determine the candidates in Ck

 that are contained in a given
transaction t.

Sonam S. Chauhan et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 01 Jan 2014 6

1)
 Consider an example of database given in fig2. In each insertion (or for each pass), it constructed a candidate
set of large itemsets, count the number of time each candidate item is present and then determine large item set
based on predetermined minimum support[7].In the first interaction ,simply scan all the transaction to count the
number of occurrence for each item. The set of candidate 1-itemsets, C1 got is as shown in the fig2.Assume the
minimum transaction support required is two, the set of large 1-itemset, L1, composed of 1-itemset with
minimum support required can be determined. To discovered the itemset of 2-items such that any subset of a
large itemset must also have minimum support, we use L1*L1 to determine a candidate set of itemsets C2 where
* is concatenation operation in third case. C2 consist of (|L1|/2) 2-itemset. Next, the four transactions in D are
scanned in D and scanned and support of each candidate item is encounter. The middle table of the second row
in fig2 represents the result from such counting in C2. The itemset of 2-items, L2, is therefore generated based
on the support of each candidate 2-itemset in C2.The set of candidate itemset, C3, is generated from L2 as
follows. From L2, two large 2-itemset with the first same item, such as {BC} and {BE} are identified first. Then
it test whether the 2-itemset {CE}, which consist of their second items, constitute large 2-itemset or not. Since
{CE} is a large item set for itself, we know that all the subsets of {BCE} are large and then {BCE} becomes a
candidate 3 itemset. There is no other 3-itemset from L2. It then scans all the transactions and discovers the
larger 3-itemsetL3 in Fig2. Since there is no 4-itemset to be constituted from L3, it ends the Process.

Examlpe

Figure 2: Generation of candidate itemsets and large itemset

K-itemset An itemset having k items

L
Set of large k-itemsets (Those with minimum support)

k Each member of this set has two fields:
i) Itemset and ii) support count.

C

Set of candidate k-itemsets (Potentially large itemsets)
k Each member of this set has two fields:

i) Itemset and ii) support count.

TID Itemset
100
200
300
400

ACD
BCE

ABCE
BE

Sonam S. Chauhan et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 01 Jan 2014 7

B. Algorithm AprioriTid
 In AprioriTid algorithm after the first pass; database D is not used for counting support. Rather, the set Ck is
used for this purpose, were Ck is the set of candidate K-itemsets when the TIDs of the generating transactions
are kept associated with the candidates. Each member of the set Ck is of the form < TID, {Xk}> where each Xk
is a potentially large k-itemset present in the transaction with identifier TID. If a transaction does not contain
any candidate k-itemset, then Ck will not have an entry for this transaction. Thus, the number of entries in Ck
may be lesser than the number of transactions in the database, particularly for large values of k. In addition, for
large values of k, each entry may be smaller than the corresponding Transaction, because very few candidates
may be contained in the transaction. However, for small values for k, each entry may be larger than the
corresponding transaction because an entry in Ck

C. Algorithm DHP
 includes all candidate k-itemsets contained in the transaction.

 DHP also generates a K-itemset by Lk+1. However, DHP is unique in that it employs the bit vector, which is
built in the previous pass, to test the validity of each k-itemset. Instead of including all k-itemsets from Lk-1*Lk-1
into Ck, DHP adds a k-itemsets from Ck only if that k-itemset passes the hash Filtering. It can be seen later, such
hash Filtering reduces the size of Ck

IV. PERFORMANCE COMPARISION

. It later counts the support of candidate itemsets and to reduce the size of
each transaction. A subset function is used to determine all candidate itemsets contained in each transaction.

 As per the above discussion we tried to compare the three algorithms Apriori, Aprior Tid, and DHP for 4 to
6 passes against their execution time (sec). We graphically represent the comparison of all three algorithms as
follow.

0

20

40

60

Apriori Apriori-Tid DHP

Pass 1 Pass 2 Pass 3 Pass 4-6

Ex
ec

ut
io

n
Ti

m
e

Figure3: Performance Comparison between algorithms

As per the discussion before and graphical explained we could clearly see that the Apriori algorithm performs
the best in 1 pass as it comparatively taken very less time than other two to compute the itemset. However its
performance decreases in the 2 and 4-6 passes. It can also be seen that after the first pass the performance of
Apriori-Tid increases but it consumes a lot of time in its first pass. DHP beats both the algorithms and takes the
least time to compute. It can be seen clearly that the execution time of the first two passes by Apriori is larger
than the total execution time of DHP. Thus DHP algorithm provides the best performance.

V. CONCLUSION
In this paper, we listed out some of the existing algorithm for mining association rule and study their working.
The algorithms work in two steps. In first step frequent items are found. Large itemsets are computed in second
step. However while practically using the association rule mining tools several problems occurred such as many
a time we do not get results in a reasonable time. It is widely identified that the set of association rules can
rapidly grow which become very difficult to handle, especially as we decrease the frequency requirements. The
larger the set of frequent itemsets the greater the number of rules given to the user, many of which are
redundant. This is true even for smaller datasets, but for larger datasets it is simply not probable to mine all
possible frequent itemsets, let alone to generate rules, since they typically produce very large number of
frequent itemsets. Although several different solutions have been proposed to solve efficiency issues, they are
not always successful.

Sonam S. Chauhan et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 01 Jan 2014 8

REFERENCES
[1] Agrawal, R., Imielinski, T., and Swami, A. N. 1993. Mining association rules between sets of items in large databases. In Proceedings

of the 1993 ACM SIGMOD International Conference on Management of Data, 207-216.
[2] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data

Engineering, 5(6):914{925, December 1993. Special Issue on Learning and Discovery in Knowledge-
[3] Based Databases. M. Holsheimer and A. Siebes. Data mining: The search for knowledge in databases. Technical Report CS-R9406,

CWI, Netherlands, 1994.
[4] G. Piatestsky-Shapiro, editor. Knowledge Discovery in Databases. AAAI/MIT Press, 1991.
[5] R. Agrawal and R. Srikant. “Fast algorithms for mining association rules in large databases”. Research Report RJ 9839, IBM Almaden

Research Center, San Jose, California, June 1994.
[6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, Belmont, 1984.
[7] J. Han, Y. Cai, and N. Cercone. Knowledge discovery in databases: An attribute oriented approach. In Proc. of the VLDB Conference

pages 547{559, Vancouver, British Columbia, Canada, 1992.
[8] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1993.
[9] P. Langley, H. Simon, G. Bradshaw, and J. Zytkow. Scienti_c Discovery: Computational Explorations of the Creative Process. MIT

Press, 1987.
[10] S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton, editor, Inductive Logic Programming. Academic

Press, 1992.
[11] J. Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference, 1992.
[12] G. Piatestsky-Shapiro. Discovery, analy- sis, and presentation of strong rules. In G. Piatestsky-Shapiro, editor, Knowledge Discovery

in Databases. AAAI/MIT Press, 1991.
[13] R. Brachman et al. Integrated support for data archeology. In AAAI-93 Workshop on Knowledge Discovery in Databases, July 1993.
[14] R. Krishnamurthy and T. Imielinski. Practitioner problems in need of database research: Re- search directions in knowledge discovery.

SIG- MOD RECORD, 20(3):76{78, September 1991.

Sonam S. Chauhan et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 01 Jan 2014 9

	Algorithms for Mining Association Rules: An Overview
	Abstract
	Keywords
	I. INTRODUCTION
	II. PROBLEM DECOMPOSITION
	III. ALGORITHMS FOR MINING ASSOCIATION RULES
	IV. PERFORMANCE COMPARISION
	V. CONCLUSION
	REFERENCES

