
Software maintenance using effective code
clones detection

M.Alagurathinam1

Department of Computer Science and Engineering

 Sathyabama University .
Chennai-600 119

alagu004@gmail.com

Ms.Kavitha Esther Rajakumari2.
Department of Computer Science and Engineering

 Sathyabama University .
Chennai-600 119

kavithaesther@ rediff.com

Abstract: In this proposed paper it described about the code clone detection using the fine granularity
technique called frequent pattern growth algorithm. Here it used for detecting that the type clones which
are known as functional clones. In software project it mainly detect the software code .it helps to extract
the methods using frequent occurrences in patterns and names from that files it extracts the common
methods as libraries In addition to that it proposes maintenance To be performed such as adaptive
maintenance, corrective maintenance, perfective maintenance for the sample project.
Keywords: Code clones, maintenance, frequent pattern.

I. INTRODUCTION
Normally in software maintenance testing team commonly maintaining the set of software projects in

which the software has been maintaining quiet a period of time .and after I will updated into current updates. In
updating the existing codes are changed with newly added properties and some configurations

In the process some developer proposed a some thoughts are matches with similar concepts in already
designed code .That kind of code are called code clones.This will caused the software to preform little bit slower
and affects the system performance

So we look into those code fragments and rectify them by detecting them varies techniques are already
proposed some of the techniques are Antonio Cuomo describe about the detection of code clone pair using
calculus communicating systems for type -2 clones.

Nicolas Battenberg discuss about the impact of software code clones and its effect on the user level.and
then normalize the methods and filter the basic methods such as getter and setter methods and filter out the
methods then after generate the hash values for every textual representation.

We listed out the those repeated clone methods in the functional tableland finally they make hash
groups from the hash groups they extract the common methods as Libraries which will helpful for the huge
software files

In the proposed paper it filters out methods that Have no block statements so such functions have some
error checks normally to make a library files are predefined file which was developed by most frequent usage

II. LITERATURE SURVEY
Some of the authors are also discussed about the code clones and its common factors.
 Pitts and Raoult and Guillemin these author described the equivalence of programs has been discussed

in terms of operational semantics
Pits introduced a method proving contextual equivalence of ML functions. Result and Guillemin

proves that two different ways of program equivalence they are fixed-point semantics and operational semantics
are discussed for recursive definitions

 Ivanovo introduces a technique called program schemata He discussed about the program
transformation is to transform a program into a semantically equivalent one by applying only semantic-
preserving transformations
 Fischer describes about whether a component can be reused in a given context without any
modification. The basic idea of the reuse approach is that a component satisfies a query with precondition and
post condition

M.Alagurathinam et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 05 May 2014 595

Podgurski and Pierce introduces a method called behavior sampling for the automated retrieval of
components from a software component library for the purpose of reuse. The components are organized in a
classification. The user is prompted with a choice between two tulles and its behavior And there are another two
different detection are available they are static and dynamic similarity detection

There has been significant research dedicated to detecting syntactically similar code fragments the
research in the area of program based clone detection can be found in the survey from Kosher Clone detectors,
such as CCFinder, Clone Detective and Deckard are effective in finding Clones created by copy paste
programming.

These similarities of independent origin are also referred toas semantic clones or type-4 clones Sager
another researches proposed an approach for detecting similar Java classes using tree algorithms for
understanding software evolution Kim use a semantic-based static analyzer for detecting semantic clones

Kawrykow and Robillard propose a method for detecting similarity of API methods. Their approach
detects client code that duplicating methods available in the API of the type’s .Kuhn introduced an approach for
identifying “topics” in source code. They use latent semantic indexing and analyze linguistic information in
identifiers and comments for grouping source code artifacts that are semantically related. This technique is
called as Semantic Clustering McMillan suggested a method for detecting similar software applications. They
use the Concept of semantic anchors that used for API methods to define the semantic characteristics of an
application.

KarpRabin fingerprinting is used for calculating the length of n substrings of a text first text to text
transformation is performed for the dataset for eliminating uninterested characters then it removing all
whitespace characters except line separators
Dynamic Similarity Detection In this detection Jiang and Su deploys random testing to find functionally similar
code fragments, code fragments described under input and output behavior. A code transformer turns the code
fragments into executable units. Then the code fragments are clustered by separating fragments with different
outputs for the same input.

III. PROPOSED WORK.
In this proposed paper it handled set of software projects for software maintenance .In this paper it

reads the application file and scan The file using frequent pattern growth Algorithm
A. Extract methods

In frequent pattern it reads the file using method name and it compare the method with the another file
it checks the method name and inside the it check the block statements and some logic that occurred in parent
program
B. Compare with sample

It performing comparative code it with the child program it keeps on checking the total lies related to
the application and concludes them in the functional table after

Fig 1. method detection

C: Create functional table
Drawing into functional table it checks the threshold value of most repeated method with default threshold
D: Enable as library files:
If any method exceeds the threshold value it was converted into library file
E:Maintanance analysis

In adaptive maintenance modification of software product performed after delivery to keep a software
product usable in a changed or changing environment

In corrective maintenance it performs diagnosing and fixing errors possibly ones found by users
In perfective maintenance it performs implementing new or changed user requirements which concern

functional enhancement to the software.
 In preventive maintenance it performs increasing software maintainability or reliability to prevent

future problems are concerned. Another state of the token based clone detection technique is CP-Miner where a

M.Alagurathinam et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 05 May 2014 596

frequent subsequence mining technique is used for identifying a similar sequence of tokenized strings in the
sample project .Normally token-based techniques are used to assist plagiarism detection .

 M. Kim proposed a model of clone genealogy on clone evolution. According to their study, refactoring
of clones may not always improve software quality based on the revisions of the performance and
maintainability.

Fig .2. Architecture Diagram

IV.ALGORITHM USED
Frequent patterns are patterns that appear frequently in a dataset.it performs the function as to

repeatedly scan the whole database and check a large set of candidates by pattern matching.
For designing a method that mines the complete set of frequent item sets it compresses the database

representing frequent items in to fptree, then divides the compressed database into a set of conditional databases
each associated with one frequent item or pattern fragment and mines each database separately.
Fragment 1:
int i, j=1;
for (i=1; i<=VALUE; i++)
j=j*i;
Now consider the following code fragment 2, which is actually a recursive function that
calculates the factorial of its argument n.
Fragment 2:
int factorial(int n) {
if (n == 0) return 1 ;
else return n * factorial(n-1) ;
}
This approach may substantially reduce the size of the datasets to be searched .in frequent pattern mining
method uses tree to generate conditional pattern basses using a bottom –up projection technique.

M.Alagurathinam et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 05 May 2014 597

For examining type-3 clones other equivalences are considered in software product. Easy to identify and
refractor and formulate

TABLE I .TAXONOMY FOR CODE CLONE TECHNIQUES

Language
Paradigm

Only Procedural

Only Object-oriented

Both procedural and OO
Byte code

Assembly code
Extreme Programming

Clone Relation Directly ClonePair
Directly CloneClass

CC in post processing

 Level of
similarity

Textual

Lexical
Syntactical

Semantical

Hybrid

Clone
granularity

Free

Fixed

Clone similarity Exact Match
Parameterized match

Near miss

High level clone

Design level structural
clone

Comparison
granularity

Line
P-Line

Substring

Identifiers and comments
Tokens

Statements,subtree,sub
graph

Begin-End Blocks
Methods,classes,Files

M.Alagurathinam et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 05 May 2014 598

A. In CMMI level-3 service level software maintenance as for as concerned it with other level of
maintenance level it provides software product a more effective one .by providing this prototype it helps for the
user related to maintenance In previous code clones method detection are done by only some efficient tools in
this method we are detecting and performing template creation for the software product and code refactoring
also done to eliminate the dead codeIn common software maintenance project companies provide annotations
and type of work spaces are given to user separately about what are the specific functions repeated are identified
and helpful to the user to work on

V. RESULTS AND DISCUSSIONS
In this proposed paper it discussed about the processing of code clones and it will displayed in the table It

will filter out the method and its repetitive ones are extracted by algorithm are shown in the table.
TABLE II WORK COMPLETED.

Code Clone Table

Sl.No.

Code Analysis

Depth measures

1 Total no of
projects 10

2

Total no of code
examined 1033

3 Total no of
methods retrieved 42

4

Total no of
similar methods

retrieved

12

5 Library files
converted

2

VI. CONCLUSION AND FUTURE WORK
This paper proposed a method-based clone detection technique is used to creation of libraries. Here we

examined the some sample application in java as software projects. Our study proves that the proposed
technique could detect the clone detection from the application set.

We inspected and retrieved detected clones and transferred as library file. In future it will implement
the second part of frequent pattern algorithm, that could be helpful for the automatic and even more efficient
detection of code clone it will helpful for the easy manipulation handheld executable files for future software
projects.

REFERENCES
[1] Hiroshi Igaki Keisuke Hotta, Tomoya Ishihara, Shinji Kusumoto ,Yoshiki Higo:“Inter-Project Function a Clone Detection toward

Building Libraries Survey” An Empirical Study on 13,000 Projects in year,pp-17.
[2] AkitoMonden, DaikaiNakae, Ken-ichi Toshihiro Kamiya, Matsumoto, Shin-ichiSato“Software Quality Analysis by Code Clones in

Industrial Legacy Software”.
[3] Jonathan I. Maletic ,Michael L. Collard, NouhAlhindawi Omar Meqdadi“Towards Understanding Large-Scale Adaptive Changes

From Version Histories”in the year 2009,pp-1-4.
[4] Scott Grant James, R. Cordy David B.Skillicorn“Reverse Engineering Co-maintenance Relationships Using Conceptual Analysis of

Source Code”in the year 2008, vol-, pp-4-7.
[5] Nelly Maneva“Software Quality Assurance and Maintenance for Outsourced Software Development”.
[6] Scott Grant, James R. Cordy, David B. Skillicorn “Using Topic Models toSupport Software Maintenance”.
[7] Antonio Cuomo, AntonellaSantone, UmbertoVillano “A Novel Approach Based on Formal Methods for Clone Detection”.
[8] Nicolas Battenberg, Weiyi Shang, Walid M. Ibrahim, Bram Adams, Ying Zou, Ahmed E. Hassan “An empirical study on inconsistent

changes to Code clones at the Release level”.
[9] Lars Heinemann “Effective and Efficient Reusewith Software Libraries”.
[10] JiaweiHan,JianPei,MichelineKamber, ”Data mining concepts and techniques” published by Elsevier, a division of Reed Elsevier India

Private Limited Chapter 6. Mining frequent patterns Associations and correlations, Basic concepts and methods, 6.2 Frequent Item set
Mining Methods, 6.2.4 A Pattern Growth Approach for Mining Frequent Itemsets pp 243-245,257-259.

[11] http://Data_Mining_Algorithms_In_R/Frequent_Pattern _Mining/The_FP-Growth_Algorithm.
[12] http://www.cs.uiuc.edu/~hanj/pdf/dami04_fptree.Pdf pp- 73-79.

M.Alagurathinam et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 05 May 2014 599

	Software maintenance using effective code clones detection
	Abstract
	Keywords
	I. INTRODUCTION
	II. LITERATURE SURVEY
	III. PROPOSED WORK
	IV.ALGORITHM USED
	V. RESULTS AND DISCUSSIONS
	VI. CONCLUSION AND FUTURE WORK
	REFERENCES

