
A Comparative Study on Different Types of
Sorting Algorithms (On the Basis of C and

Java)
Rekha dwivedi

PG scholar
Department of Computer Science & Engineering

SVITS –Indore (M.P)
Email: rekhadwivedi40@yahoo.com

Dr. Dinesh C. Jain
Reader

Department of Computer Science & Engineering
SVITS –Indore (M.P)

Email: dineshwebsys@gmail.com

Abstract- Sorting is used for arranging the data in some sequence like increasing or decreasing order. I
have discussed about various sorting algorithm with their comparison to each other in basis of time
complexity and space complexity as well as C and Java. These papers also show running time of
algorithm with the help of C language and Java. I have compared some types of sorting algorithm like
insertion sort, selection sort, quick sort, and bubble sort by comparing time complexity and space
complexity.

Keyword- Bubble sort, Insertion sort, Selection sort, Quick sort, Time complexity.
I. INTRODUCTION

A. Sorting

 Let p be a list of m elements P1, P2, P3…….Pn in memory. Sorting P means arranging the content of P in
either increasing or decreasing order i.e.,P1<P2<P3<P4………..<Pn.
There are m elements in the list, therefore there is m! ways to arrange them.
B. Sorting Algorithm

 Sorting algorithm is an important task for arranging the elements in the list. Comparing the various types of
sorting in this paper on the basis of C and Java.

II. TYPES OF SORTING ALGORITHM

A. Insertion Sort
 An insertion sort is one that sorts a set of value by inserting values into an existing sorted file. It is useful
for smallest elements of array.
Therefore the total no. of comparisons are:
T(n)=1+2+3+….+(i-1)+……+(n-1)= n(n-1)/2
T(n)=O(n)
The execution time of Insertion Sort in C is more as compared to Java.

Figure 1. Insertion Sort in C

Rekha dwivedi et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 08 Aug 2014 805

Figure 2. Insertion Sort in Java

B. Bubble Sort
 In Bubble sort, each element is compared with its adjacent element. If the first element is larger than the
second one then the position of the element is interchanged, other it is not changed. Then next element is
compared with its adjacent element and the same process is repeated for all the elements in the array.
In bubble sort, the first pass requires (n-1) comparison to fix the highest element to its location , the second pass
requires (n-2),……,ith pairs requires (n-i) and the last pass requires only one comparison to be fixed at its
proper position.
Therefore the total no. of comparisons are:
T(n)= (n-1)+(n-2)+(n-3)+……..+(n-i)+3+2+1=n(n-1)/2
T(n)=O(n^2)
The execution time of Bubble Sort in C is more as compared to Java.

Figure 3. Bubble Sort in C

Figure 4. Bubble Sort in Java

C. Selection Sort
 In selection sort, the first element of array is compared with minimum value of array and interchanged the
position of element. Then element is compared with the next minimum value of array and the same process is
repeated for all elements in the array.
In selection sort makes first pass in (n-1) comparisons, the second pass in (n-2) comparisons and so on.Total no.
of comparison are:
T(n)=(n-1)+(n-2)+(n-3)+,……………,+(n-i)+3+2+1=n(n-1)/2
T(n)=O(n^2)
The execution time of Selection Sort in C is more as compared to Java.

Rekha dwivedi et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 08 Aug 2014 806

Figure 5. Selection Sort in C

Figure 6. Selection Sort in Java

D. Quick Sort
 Quick sort works by partitioning methods for sorting the array. And each partition is in turn sorted
recursively. In partition, one element of array is selected as a pivot value. This pivot value can be the first
element of array. The array elements are grouped into two partition 1. One partition contains elements that are
smaller than pivot value.2.Another partition contains elements that are larger than pivot value. Time required to
partition the array is: O(n). The execution time of Quick Sort in C is more as compared to java.

III. COMPARISON OF SORTING ALGORITHM IN TABULAR FORM

Sort Time Complexity Advantages & disadvantages

Insertion Sort O(n) The advantage of insertion sort is its simplicity. It is also good
performance for smallest array. The disadvantage of insertion sort is
that it is not useful for large elements array.

Selection Sort O(n^2) The advantage of selection sort is that it performs well on small
array.
The disadvantage of selection is that it is poor efficiency for large
elements array.

Bubble Sort O(n^2) The advantage of bubble sort is that it is easily implemented. In
bubble sort, the elements are swapped without additional temporary
storage, so space requirement is minimum.
The disadvantage of bubble sort is same as a selection sort.

Quick Sort O(n log n) The advantage of Quick sort is that it is used for small elements of
array as well as large elements of array. Disadvantage of Quick sort
is that the worst case of quick sort is same as a bubble sort or
selection sort.

Rekha dwivedi et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 08 Aug 2014 807

IV. GRAPHICAL REPRESENTATION OF SORTING ALGORITHM

Figure 7. Run Time (Seconds) of Sorting In C and Java

V. CONCLUSION

In this study I have studied about various sorting algorithm and comparison on the basis of time complexity,
execution time and C & Java languages. I used to the C and Java program for finding the execution time in
second. I observe that when compare all the sorting algorithms to each other then find the execution time of
quick sort algorithm is best to others and also observe that the execution time of all sorting algorithms in java is
best then C language.

VI. FUTURE SCOPE

This paper could help to the researchers in evaluating the all types of Sorting Algorithms by which they could
easily understand the pros and cons of Sorting algorithms and also to find the application of these Algorithms in
different areas.

REFERENCES
[1] Ellis Horowwitz, Sartaj Sahini, Sanguthevar Rajasekaran , Fundamental of Computer Algorithms, ISBN 81-7515257-5 by 1998
[2] Demuth, H. Electronic Data Sorting. PhD thesis, Stanford University, 1956.
[3] BLELLOCH, G. E., LEISERSON, C. E., MAGGS, B. M., PLAXTON, C. G., SMITH, S. J., AND ZAGHA, M. 1991. A comparison

of sorting algorithms for the connection machine CM-2. In Proc. Symposium on Parallel Algorithms and Architectures (Hilton Head,
SC, July 1991).

[4] THEARLING, K. AND SMITH, S. 1992. An improved super-computing sorting benchmark. In Supercomputing 92 (1992), pp. 14 –
19. IEEE Press.

[5] Perl sort documentation (http:/ / perldoc. perl. org/ functions/ sort. html)
[6] Tim Peters's original description of timsort (http:/ / svn. python. org/ projects/ python/ trunk/ Objects/ listsort. txt)
[7] (http:/ / hg. openjdk. java. net/ jdk7/ tls/ jdk/ rev/ bfd7abda8f79)
[8] Merge sort in Java 1.3 (http:/ / java. sun. com/ j2se/ 1. 3/ docs/ api/ java/ util/ Arrays. html#sort(java. lang. Object[])), Sun.
[9] Java 1.3 live since 2000
[10] http://www.scribd.com/doc/45996720/Run-Time-Analysis-of-Insertion- Sort-and-Quick-Sort.
[11] Owen Astrachan, Bubble Sort: An Archaeological Algorithmic Analysis, SIGCSE,2003,

http://www.cs.duke.edu/~old/papers/bubble.pdf.

0

0.5

1

1.5

2

2.5

3

3.5

Bubble Sort Insertion Sort Selection Sort Quick Sort

C language

Java language

Rekha dwivedi et al. / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 5 No. 08 Aug 2014 808

	A Comparative Study on Different Types ofSorting Algorithms (On the Basis of C andJava)
	Abstract
	Keyword
	I. INTRODUCTION
	II. TYPES OF SORTING ALGORITHM
	III. COMPARISON OF SORTING ALGORITHM IN TABULAR FORM
	IV. GRAPHICAL REPRESENTATION OF SORTING ALGORITHM
	V. CONCLUSION
	VI. FUTURE SCOPE
	REFERENCES

