
Knowledge Representation for the tool used
for Requirement Segregation in Software

Development Process
Hema Gaikwad

Symbiosis International University
Symbiosis Institute of Computer Studies & Research

Pune, India
hemagaikwad2005@gmail.com

Abstract— Software development is the major activity of Information Technology. We can engineer the
software with the help of various process models. System Development Life Cycle (SDLC) is the base for
all process models. All the other process models (for example RAD, Spiral model, Component based
model, Increment model and even Agile model) derived from SDLC. The Computer Aided software
engineering (CASE) tools are software and we can use these tools to develop any application software. If
we use these tools in the software development process we can reduce the manual work, efforts and save
the time also. There are very low probability of failure the system. CASE tools are mostly associated with
all phase of SDLC. Requirement engineering is the most important activity of software development life
cycle. We have to assign more time on that phase because if we assign less priority and less time to that
phase, we can't able to collect the proper requirement and this lead to unsatisfied deliverable. Unsatisfied
and inefficient deliverables is not accepted by the client also. So there is a compulsory need to investigate
some new CASE tools specially associated with Requirement Engineering which helps to optimize the
software development process as well as increase the performance. As we know that Tool cannot work
without providing knowledge. There are various ways to represent knowledge such as Inheritable
knowledge, Relational Knowledge and Procedural Knowledge. This paper explores the CASE tool as well
as various knowledge representation methods for Requirement engineering phase of Software
Development Life Cycle and specially focused on requirement segregation.

Keywords- CASE, FR, NFR, RAD, SDLC
I. INTRODUCTION

Software is a set of instructions, software has many features like it is always engineered not manufactured and
the most important feature is it doesn't wear out. Engineered means development. So software engineering is a
systematic approach through which we can developed the disciplined application. Pressman stated that Software
Engineering is a systematic ,disciplined quantifiable approach to the development, operation and maintenance of
software; that is the application of engineering to the software[1]. The computer has become an invaluable tool
throughout the corporate world and has greatly enhanced productivity. However, most applications have been
targeted at making individuals more productive. With the development of networks, computers have expanded
their role somewhat and now provide easy ways to communicate, share data, and share applications. Still, the
environment provided by most computer systems is largely targeted at the individual. It is quite common,
however, for groups of individuals to collaborate on a project. Computers support the individual work done by
group members but provide only token support for group interaction. The details of this interaction is left for the
users to organize. There is a need for new tools that provide an environment where a group can cooperate on a
project. Most work done in this area has thus far been targeted toward office automation and communication.
However, there has been very little done to provide a group tool that supports the engineering design process. The
objective of the computer supported cooperative work (CSCW) project is to provide an environment that supports
this process. In particular, this environment provides collaborative tools that support computer-aided design
(CAD) and computer-aided software engineering (CASE)[2]. Software development is a complete process and
has many phases like Requirement engineering, Planning, Analysis and Design, Development, Verification &
Validation and Deployment, other phases of SDLC represent the sub processes. All the sub processes of SDLC
will execute in sequential manner. Requirement Engineering is the most important and time consuming activity. It
includes requirement gathering, requirement analysis and requirement segregation. Now a days we can automate
each and every sub process of SDLC by using various CASE tools. CASE tools are known as CASE, Computer
aided software engineering. CASE (Computer Aided Software Engineering) tools have played a critical role in
improving software productivity and quality by assisting tasks in software development processes since the
1970’s [3]. In recent years, computer-aided software engineering tools have emerged as one of the most important
innovations in software development to manage the complexity of software development projects (1998). The
benefits of using CASE tools include: increasing the speed with which software is developed and improving the

Hema Gaikwad / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 08 Aug 2015 488

quality of the developed system ,reducing the cost of software/system development and providing a uniform
platform for software/system developers to present information and knowledge compactly for ease of
communication[4]. CASE tools are a class of software that automate most of the software development activities,
examples are Requirement tracing tools, Analysis and design tools, Interface design and development tools,
Programming tools, Integration and testing tools and Test management tools etc. An important role of a CASE
tool in software development is to serve as a methodology companion by providing methodology support. A tool
that provides methodology support should generate an error or warning when the rules of the methodology are
violated (Hatley, 1988)Vessey, Jarvenpaa & Tractinsky (1992)[4]. In this paper, we propose requirements for a
platform that supports building CASE tools for software engineering research. The goal of such a platform is to
provide core features, which are necessary for such tools such as diagram based visualization, versioning and
collaborative modification of models. The core idea is that researchers spend a common effort in implementing
these features rather than implementing the requirements over and over again[5]. Computer-Aided Software
Engineering (CASE) tools are important for systems/software development and implementation. CASE tools
can be used to reduce the cost and time of system/software development while improving the quality of the
product developed. CASE tools help to save our time and efforts and indirectly increase the productivity and
quality of the software. Tools offer many benefits to the project team to building the large scale system. In this
paper we only focus on the requirement engineering CASE tools. To determine the values for the “tool use”
factor, Checkpoint requires the input of tool effectiveness raging from 1 (Excellent) to 5 (Poor). Tools are
categorized by the phases (Project Management, Requirements, Design, Coding, Testing and Debugging,
Documentation, and Maintenance methods/tools) they support. Checkpoint captures the information about the
degree of tools integration through the input of CASE Integration.

Table 1 Case Integration Criteria

Poor Below Average Average Good Excellent

No use of CASE
tools in the
company/organization

Company/organizat
ion is using CASE
tools, but not on this
project

Limited amount
of CASE on this
project

Some use of
CASE tools in
multiple phases

Integration of
CASE across all
phases of life cycle

The criteria for the CASE Integration is shown in Table 1. Even if Checkpoint evaluates Evaluation Team
capability multipliers Tool capability multipliers CASE tools by quality and the degree of integration across
phases/projects, it does not account for the effect of tool maturity and user support [3]. We know that we collect
the requirement using various tools such as Interview, Questionnaire, Observation and Review of documents.
These methods are known as Fact finding methods or Fact finding tools. Questionnaire may be either Open
questions or close questions. Open question means Question is define and the space is given for writing the
answer. Fill in the blanks, Dichotomous questions, Ranking scale, Multiple choice and rating scale questions are
example of close questions. Another category of questions are W questions such as WHAT, HOW, WHICH,
WHO,WHERE, WHEN, WHILE etc. Again W questions may be either open or close questions. Some of the
more typical functional requirements include Business requirement documents, Business rules, Transaction
corrections, adjustments and cancellations, Administrative functions, Authentication, Authorization levels Audit
Tracking, External Interfaces, Certification Requirements, Reporting Requirements ,Historical Data Legal and
Regulatory Requirements. Some of the more typical non functional requirements include Performance, Response,
Time,Throughput,Scalability,Capacity,Availability,Reliability,Recoverability,Maintainability,Serviceability,Secu
rity,Regulatory,Manageability,Environmental,Data integrity, Usability and Interoperability. Current object-
oriented CASE tools are useful for recording and gaining insight into OO models. They offer extensive support
for especially the analysis and design of object-oriented software. The possibility to generate skeleton code
motivates development teams to construct a good design before coding. Developers subsequently add the
remaining code; CASE tools then offer support for keeping model and code consistent. Extensive possibilities for
maintaining models and producing documentation are also provided. Contemporary CASE tools thus provide for
more efficient communication within development teams and therefore facilitate overall maintenance[6].Within
the context of CASE tools, a constraint is a rule that defines the range of options available in performance of a
task. In the very simplest sense of the word, most tools constrain the user to the application of a particular
modeling method, by simply not supporting alternative modeling mechanisms. Constraints can, however, be more
sophisticated. For example, constraints on the structure of models might include a rule that every process in a
data-flow model must have at least one input data flow and at least one output data flow. Or, constraints on the
sequence of design activities might specify that a parent process must be specified before its child processes.
These kinds of constraints, referred to here as methodological constraints since they are specified by design
methodologies, are implemented in CASE tools to guide the user toward a ‘good’ or ‘correct’ design. By
instantiating particular methodologies, the builders of CASE tools attempt to control the behavior of tool users -

Hema Gaikwad / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 08 Aug 2015 489

by communicating (through the tools) the necessary and appropriate processes in software development[7].
Knowledge representation is a combination of data structures and interpretive procedures that leads to
knowledgeable behavior. Therefore, it is required to investigate such knowledge representation technique in
which knowledge can be easily and efficiently represented in computer[8]. Knowledge representation (KR) and
inference mechanism are most desirable thing to make the system intelligent. System is known to an intelligent if
its intelligence is equivalent to the intelligence of human being for a particular domain or general. Because of
incomplete ambiguous and uncertain information the task of making intelligent system is very difficult. There are
various knowledge representation schemes in AI. All KR techniques have their own semantics, structure as well
as different control mechanism and power. Combination of two or more representation scheme may be used for
making the system more efficient and improving the knowledge representation[9]. This paper states that
Knowledge is a term and it represent progression that starts with data. Knowledge representation model progress
from data through information and knowledge to wisdom[10]. This paper states that instead of using single
knowledge representation method like Bayesian Network ,Facts and Production Rules, Semantic nets, Conceptual
Dependency, CYC, Frames, Scripts, and Neural Networks. We can use the hybrid KR formalism consisting of
two or more different sub formalisms [11].

II. DISCUSSED PROBLEM

CASE tools helps in complete SDLC process, they are the software and try to reduce the human time and
human efforts. Various CASE tools are available in the market for every phase of SDLC. We know that
requirement engineering is the first and most important phase of SDLC. So we have to give maximum time to
that phase because if we gather the requirement carefully we can deliver the efficient system otherwise the same
SDLC process will repeat. So CASE tools should be present for requirement engineering phase, but the thing is
that only tool is not sufficient we have to develop knowledge also.

III. SOLUTION

The aim of this research is to suggesting a model that we can use in requirement engineering phase as well as
develop the knowledge by using various methods. A questionnaire instrument was selected in order to collect the
large amount of data required to gain a comprehensive understanding of the Requirement Engineering process.
Additionally, the questionnaire acted as a time saving tool. The questionnaire was based on a questionnaire
developed by the Requirements Engineering. The questionnaire consists of three sections covering (1)
background details of the participant, company and project, (2) the RE process, and (3) RE techniques used.
Many closed-ended questions were used to minimize the length of the questionnaire, however participants were
offered an “Other-please specify ”option to prevent forced answers from occurring. In the proposed model there
are total 4-5 components such as stakeholders, Requirement bunch, W questions private cloud and expert system.

Fig 1 Expert System

Hema Gaikwad / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 08 Aug 2015 490

Figure 1 shows that when stakeholders completed their communication we get the bulk of requirements. We
scan all requirements one by one. The input of the expert system is scan requirements then the smart machine
uses its artificial knowledge given by us and derive some conclusions. We can provide knowledge to the expert
system in different ways. The Inheritable knowledge is as follows: Requirements bunch consist of multiple
requirements, multiple requirements can be Functional, Non functional and other requirements. WHAT is
Functional requirements, How is Non functional requirements and WHO,WHERE,WHEN, WHICH etc are other
requirements. Business requirements specification and Business rules represent WHAT but Performance,
Response,Time,Throughput,Scalability,Capacity,Availability,Reliability,Recoverability,Maintainability,Servicea
bility, Security, Regulatory, Manageability, Environmental, Dataintegrity, Usability, Interoperatibility represent
HOW.

The expert system is a smart machine and has the following features like- it should requires knowledge
database and with the help of knowledge database the expert system is able to take decisions. There are various
methods are used to develop knowledge database such as Inheritable, Relational and Procedural. The Inheritable
knowledge for expert system is as follows-

Fig. 2.Inheritable Knowledge

Figure 2 shows the Inheritable knowledge. It shows that Requirement bunch has multiple requirements, FR,
NFR and OR are type of requirements. WHAT is Functional Requirement, HOW is Non functional Requirement
and WHO,WHERE,WHEN,WHICH are Other Requirements. WHAT instances are Business requirement
documents, Business rules, Transaction corrections, adjustments and cancellations, Administrative functions,
Authentication, Authorization levels Audit Tracking, External Interfaces, Certification Requirements, Reporting
Requirements, Historical Data Legal and Regulatory Requirements. HOW instances are
Performance,Response,Time,Throughput,Scalability,Capacity,Availability,Reliability,Recoverability,Maintainabi
lity,Serviceability,Security,Regulatory,Manageability,Environmental,Data integrity, Usability and
Interoperability.The Relational Knowledge for the Expert system is as follows—

Hema Gaikwad / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 08 Aug 2015 491

Table 2 Relational Knowledge

Player Task/Activity Output
Project Manager
and Stakeholder

Communication Set of Requirements

Project Manager
and Stakeholder

Uses Fact finding tools Set of Requirements

Project Manager Uses the Expert System Different types of
Requirements

Project Manager Checks the Different types of
Requirements

Allocate each requirement
to its specific category.

Table 2 shows the Relational knowledge. This is the simplest way to represent declarative facts is as a set of
relations of the same sort used in database systems. The reason that this representation is simple is that standing
alone it provides very weak inferential capabilities but knowledge represented in this form may serve as the input
to more powerful inference engines. The important thing about Relational knowledge is that it always represent in
tabular form. This means that it consist of rows and columns. We always read relational knowledge row wise

The procedural knowledge as Rules for the Expert System is as follows--
If: Customer communication, and

Uses the fact finding tools, and
 Uses the Expert system, and
 Get different types of requirements,
 Then: Allocate requirements to its specific category.
 Fig 3 Procedural knowledge as Rules
Figure 3 shows the procedural knowledge. The most commonly used technique for representing procedural

knowledge is the use of production rules. In this method we write rules by using two keywords IF and THEN.
With IF we can write multiple conditions with AND operator and with THEN we can write only response.

 When the communication between project manager and stakeholder is complete we get the set of
requirements, after that then project manager uses the expert system and find the different types of requirements
such as Functional, Non functional and Other Requirements.

IV. CONCLUSION

There are basically two conclusions first is The proposed model avoids or minimize the manual work because
80% of the work (Requirement segregation) is done by smart machine. The advantage of this model is it can
handle millions of requirements at a time also increase the speed and efficiency. The advantage of Requirement
Segregation CASE tool is, it is not limited to any software but this is the generalized tool. We can embedded this
tool to any Information Technology project. The second conclusion is that there is not a single method to
represent knowledge, but there are various methods are available. We can select any one from our convenience.

ACKNOWLEDGMENT

Our most cordial thanks are due to the SICSR for the use of its facilities which made this study possible. I
thanks Dr. Yogesh Patil for their inspirational quotes and valuable suggestion. I thanks Lalit Kathapalia and
Harshad Gune for their support.

REFERENCES
[1] McGraw-Hill International Edition (2010). Software Engineering :A Practitioner's Approach(7th ed.), Roger S. Pressman.
[2] Fouss, J. D. (1996).Computer-aided Software Engineering in a Computer Supported Cooperative Work Environment(Report). Auburn,

USA.
[3] Jongmoon Baik (2000).The effects of Case tools on software development effort. Dissertation for Faculty of Graduate School,

University of South California.
[4] Andoh-Baidoo, Francis Kofi, K. Niki Kunene, and Ross E. Walker. An Evaluation of CASE Tools as Pedagogical Aids in software

development courses.
[5] Helming, Jonas, Maximilian Koegel, Hoda Naguib, Miriam Schmidberger, Florian Schneider, & Bernd Brugge. (2010). An analysis of

tool-based research in software engineering. In Computer Software and Applications Conference (COMPSAC), IEEE 34th Annual,
(pp. 53-61). Munich, Germany.

[6] Greenhorst, Danny, Maat, Matthijs, & Maijers, Rob. (1998). Evaluating OO-CASE tools: OO research meets practice. In Object-
Oriented Technology: ECOOP’98 Workshop Reader,(pp. 486-488). Springer Berlin Heidelberg.

[7] Offen, R. (2000). CASE Tools and Constraints. North Ryde: Macquarie University Joint Research Centre for Advanced Systems
Engineering. Sydney, Australia.

[8] Kesarwani, P., & Misra, A. K., et al. (2013). Selecting Integrated Approach for Knowledge Representation by Comparative Study of
Knowledge Representation Schemes. International Journal of Scientific and Research Publications, Volume 3, Issue 2, ISSN 2250-
3153.

Hema Gaikwad / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 08 Aug 2015 492

[9] Tanwar, Poonam., Prasad, T., Datta, Kamlesh., et al. (2012). Hybrid Technique for Knowledge Representation & Comparative Study.
International Journal of Computer Science & Engineering Survey (IJCSES), Vol.3, No.4.

[10] Gupta, Sita., Mohta, Deepak Kumar., Todwal, Vinod., Singh, Sushma., et al. (2011). Knowledge Representation. International Journal
of Soft Computing and Engineering (IJSCE),Volume-1,Issue-NCAI2011, ISSN:2231-2307.

[11] Rajeswari, P., Prasad, T. (2012). Hybrid Systems for Knowledge Representation in Artificial Intelligence. International Journal of
Advanced Research in Artificial Intelligence,(IJARAI), Vol. 1, No. 8.

Hema Gaikwad / International Journal of Computer Science & Engineering Technology (IJCSET)

ISSN : 2229-3345 Vol. 6 No. 08 Aug 2015 493

	Knowledge Representation for the tool usedfor Requirement Segregation in SoftwareDevelopment Process
	Abstract
	Keywords
	I. INTRODUCTION
	II. DISCUSSED PROBLEM
	III. SOLUTION
	IV. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

