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Abstract — Software defect prediction is the process of developing models for software projects is helpful 
for reducing the effort in locating defects. Software defect prediction aids to improve testing resources 
allocation by detecting defect-prone modules prior to testing.  There are various classification techniques 
used for predicting defects. Software defect prediction models are built based on a different set of metrics 
and defect data of previous software release. The main objective of this paper is to help developers to 
identify defects based on existing software metrics using classification techniques and there by improve 
the software quality. 
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I. INTRODUCTION 

          The software development life cycle generally includes analysis, design, implementation, test and release 
phases. The testing phase should be operated effectively in order to release bug-free software to end users. 
Software Reliability is an important aspect of any software system Large software systems require consistent 
upgrading that tries to correct the stated defects in previous Versions and add some functions to meet new 
requirements. The software development team tries to increase the software quality by decreasing the number of 
defects as much as possible. Software defect prediction helps to optimize testing resources allocation by 
identifying defect-prone modules prior to testing. Software defect prediction plays an important role in 
improving software quality and the prediction of defect where probable to occur in software can help to reduce 
the time and costs for software testing. Building defect prediction models for software projects is helpful for 
reducing the effort in locating defects. Software defect prediction models are built based supervised learning and 
unsupervised learning. 

II. OVERVIEW OF SOFTWARE DEFECT PREDICTION 

          Models are built for two different defect prediction tasks within project defect prediction and cross-project 
defect prediction. 

     The defect prediction models are all built using historical data from past projects, Software metrics and past 
defect information can be collected from software archives such as version control systems and defect report 
systems. Software metrics measure complexity of software and its development process each instance can be 
labeled by past defect information. . With these labeled instances, we can build a prediction model and predict 
the unlabeled instances. This prediction is conducted within the same project. So, we call this Within-project 
defect prediction (WPDP). 

      Some projects do not have defect data because of lacking in historical data from software stores. So, in some 
real industrial projects, we cannot generate labeled instances to build a prediction model. Without labelled 
instances, we cannot build a prediction model.  Defect prediction techniques train prediction models by using 
data from mature projects or called source projects, and use the trained models to predict defects for new 
projects or called target projects. So, We call this cross project defect prediction (CPDP). 

III. LITERATURE REVIEW 

     A survey is conducted to help developers identify defects based on existing software metrics using data 
mining techniques especially Classification and there by improve software quality which leads to reduction in 
the software development cost in the development and maintenance phase. Different classification techniques 
have been surveyed with different data sets. Yuan Chen, et.al [1] have surveyed the different data mining 
classification techniques for software defect prediction. They proposed a new model based on Bayesian network 
and PRM to predict the software defect and manage. Hassan Najadat and IzzatAlsmadi [2] Proposed a new 
model based on Ridor algorithm to predict fault in modules. They also tested the different classification 
techniques on the data sets provided by NASA. The results shown that Ridor algorithm is better than the 
existing technique in terms of accuracy and extraction of number of rules. Ahmet Okutan,OlcayTanerYıldız [3], 
Introduced a new two metrics NOD, for the number of developers and LOCQ for source code quality apart from 
the metrics which is available in Promise data repository. Using Bayesian network classifier experimental shows 
that NOC &DIT have very limited and untrustworthy. LOCQ is more effective like CBO & WMC. NOD metric 
showed that there is a positive correlation between the no of developers and extent of defect prunes. LOC is 
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proved to be one of the best metric for quick defect prediction. LCOM3 & LCOM have less effective compared 
to LOC, CBO, RFC, and LOCQ&WMC. Thair Nu Phyu [4] reviewed on various classification techniques such 
as decision tree induction, Bayesian networks, k-nearest neighbor classifier, case-based reasoning, genetic 
algorithm and fuzzy logic techniques. The results found that there is no proper info that which is the best 
classifier. Several of the classification methods produce a set of interacting loci that best predict the phenotype. 
However, a straightforward application of classification methods to large numbers of markers has a potential 
risk picking up randomly associated markers. Wen Zhang et.al [5] proposed Bayesian Regression Expectation 
Maximize algorithm for software effort prediction and two embedded strategies handle missing data. They used 
the method of ignoring the missing data in an iterative manner in the predictive model. Here they have used data 
sets such as ISBSG and CSBSG. When there are no missing data BREM outperforms CR, BR, and SVR& M5. 
When there are missing data BREM with MDT and MDI outperforms imputation technique includes MI, 
BMI,CMI, and Mini& M5. BRM is used for software prediction and MDI used for finding missing values 
embedded with BREM. Arvinder Kaur and Inderpreet Kaur [6] , they have tried to find the quality of the 
software product based on identifying the defects in the classes. They have done this by using six different 
classifiers such as Naive base, Logistic regression, Instance based (Nearest- Neighbour), Bagging, J48, Decision 
Tree, Random Forest. This model is applied on five different open source software to find the defects of 
5885classes based on object oriented metrics. Out of which they found only Bagging and J48 to be the best. 
K.Sankar et.al [7], proposed a system which overcomes the problem of insufficiency in accuracy and use of 
large number of features. This paper proposed Feature selection techniques to predict faults in software code and 
it also measure the software code and performance of Naive based and SVM classifier. The accuracy is 
measured by F-mean metric. 

IV. CLASSIFICATION TECHNIQUES 

In this section, we briefly explain classification techniques. 

A.  Statistical Techniques 

       Statistical techniques are based on a probability model [9]. These techniques are used to find patterns in 
datasets and build diverse predictive models [8]. Instead of simple classification, statistical techniques report the 
probability of an instance belonging to each individual class (i.e., defective or not) [9].In this paper, we study 
the Naive Bayes and Simple Logistic statistical techniques. Naive Bayes is a probability-based technique that 
assumes that all of the predictors are independent of each other. Simple Logistic is a generalized linear 
regression model that uses a logit link function. 

B.  Clustering Techniques 

       Clustering techniques divide the training data into small groups such that the similarity within groups is 
more than across the groups [11]. Clustering techniques use distance and similarity measures to find the 
similarity between two objects to group them together. In this paper, we study the K-means and Expectation 
Maximization clustering techniques. K-means divides the data into k clusters and centroids are chosen randomly 
in an iterative manner [12]. The value of k impacts the performance of the technique [13]. We experiment with 
four different k values (i.e., 2, 3, 4, and 5), and found that k = 2 tends to perform the best. We also study the 
Expectation Maximization [16] (EM) technique, which automatically splits a dataset into an (approximately) 
optimal number of clusters [10]. 

C.  Rule-Based Techniques 

      Rule-based techniques transcribe decision trees using a set of rules for classification. The transcription is 
performed by creating a separate rule for each individual path starting from the root and ending at each leaf of 
the decision tree [14]. In this paper, we study the Repeated Incremental Pruning to Produce Error Reduction 
(Ripper) and RIpple DOwn Rules (Ridor) rule-based techniques. Ripper [15] is an inductive rulebased technique 
that creates series of rules with pruning to remove rules that lead to lower classification performance [13]. Ridor 
[16] is a rule-based decision tree technique where the decision tree consists of four nodes: a classification, a 
predicate function, a true branch, and a false branch. Each instance of the testing data is pushed down the tree, 
following the true and false branches at each node using predicate functions. The final outcome is given by the 
majority class of the leaf node [13]. 

D.  Neural Networks 

Neural networks are systems that change their structure according to the flow of information through the 
network during training [17]. Neural network techniques are repeatedly run on training instances to find a 
classification vector that is correct for each training set [18]. In this paper, we study the Radial Basis Functions 
neural network technique. Radial Basis Functions consists of three different layers: an input layer (which 
consists of independent variables), output layer (which consists of the dependent variable) and the layer which 
connects the input and output layer to build a model [19]. 
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E.  Nearest Neighbour 

Nearest neighbour (a.k.a., lazy-learning) techniques are another category of statistical techniques. Nearest 
neighbour learners take more time in the testing phase, while taking less time than techniques like decision trees, 
neural networks, and Bayesian networks during the training phase [20]. 

In this paper, we study the KNN nearest neighbour technique. KNN [21] considers the K most similar training 
examples to classify an instance. KNN computes the Euclidean distance to measure the distance between 
instances [22]. We find K = 8 to be the best-performing K value of the five tested options (i.e., 2, 4, 6, 8, and 
16). 

F.  Support Vector Machines 

Support Vector Machines (SVMs) use a hyperplane to separate two classes (i.e., defective or not). The number 
of features in the training data does not affect the complexity of an SVM model, which makes SVM a good fit 
for experiments where there are fewer training instances than features [20].In this paper, we study the Sequential 
Minimal Optimization (SMO) SVM technique. SMO analytically solves the large Quadratic Programming (QP) 
optimization problem which occurs in SVM training by dividing the problem into a series of possible QP 
problems [23]. 

G.  Decision Trees 

Decision trees use feature values for the classification of instances. A feature in an instance that has to be 
classified is represented by each node of the decision tree, while the assumption values taken by each node is 
represented by each branch. The classification of instances is performed by following a path through the tree 
from root to leaf nodes by checking feature values against rules at each node. The root node is the node that best 
divides the training data [20]. In this paper, we study the Logistic Model Tree (LMT) and J48 decision tree 
techniques. Similar to model trees (i.e., regression trees with regression functions), LMT [24] is a decision tree 
like structure with logistic regression functions at the leaves [24]. J48 [50] is a C4.5-based technique that uses 
information entropy to build the decision tree. At each node of the decision tree, a rule is chosen by C4.5 such 
that it divides the set of training samples into subsets effectively [25]. 

H.  Ensemble Methods 

         Ensemble methods combine different base learners together to solve one problem. Models trained using 
ensemble methods typically generalize better than those trained using the standalone techniques [27]. In this 
paper, we study the Bagging, Adaboost, Rotation Forest, and Random Subspace ensemble methods. Bagging 
(Bootstrap Aggregating) is designed to improve the stability and accuracy of machine learning algorithms. 
Bagging predicts an outcome multiple times from different training sets that are combined together either by 
uniform averaging or with voting [26]. Adaboost performs multiple iterations each time with different example 
weights, and gives a final prediction through combined voting of techniques [26]. Rotation Forest applies a 
feature extraction method to subsets of instances to reconstruct a full feature set for each technique in the 
ensemble. Random Subspace [25] creates a random forest of multiple decision trees using a random selection 
attribute approach. A subset of instances is chosen randomly from the selected attributes and assigned to the 
learning technique [26]. 

CONCLUSION 

     Software defect prediction is the process of tracing defective components in software prior to the start of 
testing phase. Occurrence of defects is inevitable, but we should try to limit these defects to minimum count. 
Defect prediction leads to reduced development time, cost, reduced rework effort, increased customer 
satisfaction and more reliable software. Software defect prediction model helps in early detection of defects 
using Classification Technique. In this paper we have discussed the various classification techniques. 
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